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Abstract
The collective properties of indirect excitons in coupled quantum wells (CQWs)
are considered. The energy of the ground state of the exciton liquid as a
function of the density of electrons e and holes h at different separations D
between e and h layers is analysed. The quantum gas–liquid transition as D
decreases is studied. The superfluidity appearance temperatures in the system
(Kosterlitz–Thouless transition temperatures) have been estimated at different
separations D between e and h layers. For the anisotropic two-dimensional e–h
system in CQWs the Mott metal–insulator quantum transition is considered.
The instability of the ground state of the system of interacting two-dimensional
indirect excitons in a slab of superlattice with alternating e and h layers is
established. The stable system of indirect quasi-two-dimensional biexcitons,
consisting of indirect excitons with opposite directed dipole moments, is
considered. The radius and the binding energy of the indirect biexciton are
calculated. The collective spectrum of a rare system of two-dimensional indirect
biexcitons, interacting as electrical quadrupoles, is studied. The density of the
superfluid component ns(T ) and the Kosterlitz–Thouless phase transition to the
superfluid state in this system are analysed.

1. Introduction

Two-layer systems of spatially separated electrons (e) and holes (h) in coupled quantum
wells (CQWs) attracted experimental interest [1–5] especially in connection with the search for
the superfluidity predicted for these systems, which can manifest itself as opposite persistent
electric currents in each quantum well [6–11]. A set of other phenomena in the system is
also interesting, particularly Josephson-type effects [6, 12, 13] (other interesting physics due
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to tunnelling in two-layer systems was discussed recently in [14]) and properties of the e–h
system in a single or coupled quantum well in strong magnetic fields [15–21].

One of the essential properties of spatially separated electrons and holes created by
laser pumping is suppression of e–h recombination due to small overlap of electron and hole
wavefunctions. Due to this fact the quasiequilibrium state of the system is easily attainable
(at timescales τ > τr � τrec, where τr and τrec are relaxation and recombination times,
respectively). This gives the possibility of studying different equilibrium phases of the e–h
system. Besides, an equilibrium spatially separated e–h system can be created by special
electronic band engineering (see [6, 8, 9]).

The object of the present work is the study of properties of the excitonic liquid phase in the
system of spatially separated electrons (e) and holes (h) in a CQW. The energy of the ground
state E of the exciton liquid as a function of the density of electrons and holes n at different
values of distance D between e and h layers is obtained.

From the analysis of the function E(n, D) we investigate the quantum gas–liquid transition
in the system of excitons with spatially separated electrons and holes.

We also study the Kosterlitz–Thouless transition of the exciton system in the superfluid
state and the Mott transition from the excitonic (insulator) phase in an anisotropic e–h system
to the electron–hole (metal) phase.

The problem of essential interest is also collective properties of excitons in superlattices
and layered systems (see, e.g., [22]). One of the main goals of the present paper is also the
study of the superfluidity of the rare electron–hole system in superlattices with alternating
e and h layers. If ‘electron’ and ‘hole’ quantum wells alternate, at low densities excitons
with spatially separated electrons and holes (indirect excitons) are created. Excitons in the
same pair of quantum wells have parallel dipole moments, but dipole moments of excitons in
neighbouring pairs of wells have opposite direction. This fact leads to essential distinction
of properties of the e–h system in superlattices from that for isolated CQWs with spatially
separated electrons and holes. In the latter case the indirect exciton system is stable due to
dipole–dipole repulsion. In contrast to this it turns out that the exciton system in the slab of
a superlattice with alternating e and h layers is unstable. This difference manifests itself even
in a three-layer e–h–e or h–e–h system.

The paper is organized in the following way. In section 2 we calculate the energy of a CQW
system in the Hartree–Fock approximation. In section 3 the correlation energy for the CQWs
is analysed. In section 4 we describe the variational calculations for the CQWs. In section 5
we study the rare system of indirect excitons in CQWs. In section 6 the gas–liquid transition
in the system of excitons with spatially separated electrons and holes in CQWs is investigated.
In section 7 we study the Kosterlitz–Thouless transition of the system of the indirect excitons
in CQWs in the superfluid state. In section 8 the Mott transition from the excitonic (insulator)
phase in an anisotropic e–h system to the electron–hole metal phase is studied. In section 9 the
instability of the ground state of the system of interacting indirect excitons in an isotropic slab
of superlattice with alternating e and h layers is established. The system of two-dimensional
indirect biexcitons, consisting of the indirect excitons in neighbouring pairs of wells, is stable.
The radius and the binding energy of the indirect biexcitons are calculated. These biexcitons
repel as electrical quadrupoles at long distances. In the ladder approximation the collective
spectrum of the two-dimensional indirect biexcitons interacting weakly by the quadrupole law
is considered.

The superfluid density ns(T ) of interacting two-dimensional indirect biexcitons in
superlattices is calculated at low temperatures T . The temperature of the Kosterlitz–Thouless
phase transition [23] of the biexciton system to the superfluid state is calculated. In section 10
we discuss results of our work.



Superfluidity of indirect excitons and biexcitons in coupled quantum wells and superlattices 12459

2. The Hamiltonian of the system. The Hartree–Fock approximation

To determine the conditions of existence (at temperature T = 0) of the exciton liquid state
in the system with spatially separated e and h, we calculate the dependences of the energy
of the ground state E on the (nonequilibrium) density n and calculate the minimum in the
dependence E(n) at different distances D between quantum wells.

The Hamiltonian of the system under consideration has the form

Ĥ =
∞∑

p=0

[(
p2

2me
− µe

)
a+

pap +

(
p2

2mh
− µh

)
b+

pbp

]

+ 1
2

∑
pp′k

{V (k)[a+
pa+

p′ap′+kap−k + b+
pb+

p′bp′+kbp−k] − 2Ṽ (k)a+
pb+

p′bp′+kap−k}, (1)

where a+
p and b+

p are electron and hole creation operators; me and mh are effective masses of

the electron and hole; V (k) = 2πe2

εk is the Coulomb interaction in one layer; Ṽ (k) = 2πe2

εk e−kD

is the interaction between electrons and holes in different layers; D is the distance between
layers; ε is the static dielectric constant and µe and µh are chemical potentials, determined by
conditions of particle conservation,∑

p

〈a+
pap〉 =

∑
p

〈b+
pbp〉 = 1

2 N,

where N is the number of quasiparticles; n = N
S is the surface density of quasiparticles and S

is the area of the system.
For the calculation of the ground state energy of the exciton liquid of spatially separated

e and h we consider pairing between electrons and holes [6, 24–26]. We use Gor’kov normal
and anomalous Green functions [27, 28]:

Gαβ(x, x ′) = −i〈T (ψ̃α(x)ψ̃+
β (x ′))〉

Fαβ(x − x ′) = eiµt〈N |T (ψ̃α(x)ψ̃β(x ′))|N + 2〉
F+

αβ(x − x ′) = e−iµt〈N + 2|T (ψ̃+
α (x)ψ̃+

β (x ′))|N〉,
where Gαβ(x, x ′) and Fαβ(x −x ′) are the normal and anomalous Green functions, respectively,
and ψ̃α(x) and ψ̃+

α (x) are one-particle Fermi operators; µ = µe + µh .
At the beginning, let us consider the Hartree–Fock approximation as a zero approximation.

In the uniform system diagrams of the Hartree approximation give zero contribution due
to the electrical neutrality. Let us consider the exchange diagrams in the Hartree–Fock
approximation.

Let us solve the equations for the normal and anomalous Green functions in the general
case without the ordinary assumption for weak interaction (as in the BCS approximation)
that the characteristic momenta of the quasiparticles are small in comparison with the Fermi
momentum. The normal and anomalous Green functions in the Hartree–Fock approximation
(with possible spontaneously broken symmetry � �= 0) are the solutions of the equations for
the Gor’kov–Nambu (Ĝ) matrix function:

Ĝ =
(

G F+

−F G

)
,

G(p) = ω + ξ

ω2 − ε2(p)
,

F+(p) = |�(p)|2
ω2 − ε2(p)

.

(2)
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Here ξ = p2

2m − µ, m = memh
me+mh

and

ε(p) = 1

z2
p + 1

[
(z2

p − 1)(p2 − r2µp2
0) −

√
2 p0r√
π

∫ ∞

0
d p′

×
∫ 2π

0
dφ

(
z2

p − 12z pz p′ exp
[−DpF

√
p2 − 2 pp′ cos φ + p′2 ])

p′

(z2
p′ + 1)

√
p2 − 2 pp′ cos φ + p′2

]
p2

F

4
, (3)

where z p = u p

vp
, and functions u2

p and v2
p are determined by the relations

u2
p = 1

2

(
1 +

ξ

ε(p)

)
; v2

p = 1

2

(
1 − ξ

ε(p)

)

where z p = u p

vp
= ctgφp; p2

0 = 2
∫ ∞

0
p d p
1+z2

p
; all momenta are expressed in units pF

p0
; pF is the

Fermi momentum; rs = 1√
πn

; µ = µe + µh is the chemical potential of the e–h pair (see

also [24, 25]). We introduce notions p2
0 = 2

∫ ∞
0

p d p
1+z2

p
; pF = (2π h̄2n)

1
2 . We use units h̄ = 1,

m = 1, e2

ε
= 1.

In the Hartree–Fock approximation the gap � is determined by the self-consistency
condition. Contrary to this in the used approximation for the intermediate type of binding
the gap is determined by the variational calculation for total energy taking into account the
correlation energy. As a probe function we use z p = u p/vp (see above).

The energy in the Hartree–Fock approximation can be expressed as

E = −Sp
∫ g

0

dg1

g1

∫ ∞

0

dω

2π

∫
d2 p

(2π)2
[Ĝ(0)(ω, p)]−1[Ĝ(ω, p) − Ĝ(0)(ω, p)]eiωt , (4)

where t → +0; Ĝ(0)(ω, p) = G(0)(ω, p)1̂ is the Green function of the free particle; 1̂ is a unit
matrix.

In the Hartree–Fock approximation the Green function Ĝ is determined by equation (2).
Accounting for equations (4) and (2), (3) we obtain the functional EH F{n} in the Hartree–Fock
approximation:

2(EH F{n}/n + µ) = 4

r2 p4
0

∫ ∞

0

p3d p

1 + z2
p

−
√

2

π2r2 p3

∫ ∞

0
pq d p dq

∫ 2π

0

|V (p − q) + Ṽ (p − q)z pzq | dφ

(1 + z2
p)(1 + z2

q)
. (5)

At high densities na∗2 
 1 the gap �p may be determined approximately as a result of
the minimization of the Hartree–Fock functional U{z p}. This gives, e.g. at D 
 a∗ (see [6]),

�p = exp

[
−16D2 p0

1

πa∗

]
, (6)

where a∗ = h̄2ε
4me2 is the effective exciton Bohr radius.

But at small D � a∗ correlation effects are essential.

3. Correlation effects

We consider the excitonic phase in the Hartree–Fock approximation (with the gap � �= 0) as
the initial zeroth order approximation for the ground state of the e–h system. Now we take
into account essential diagrams for the correlation energy.
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Figure 1. Diagrams for the correlation energy of the e–h system. (a) RPA diagrams, essential at
k/kF � 1; (b) polarization operator of the e–h system in RPA; (c) diagrams of second order taken
into account at k/kF 
 1.

For small transferred momenta we will estimate the ratio of the minimal transferred
momentum k < �

vF
to the Fermi radius pF (at the equilibrium density n). The gap at the

equilibrium density is the maximal one at the distance between layers D = 0. The variational
calculations (see below) give

�

vF pF
= m�

2π h̄2n
≈ 0.07 � 1. (7)

So RPA diagrams [29] (figure 1(a)) prevail for small transferred momenta k(x = k
pF

� 1)

not only for the metal phase, but also for the excitonic phase.
The correlation energy has the form [29]

Ec
1 = − 1

n

∫
d2k

(2π)2

∫ +∞

−∞
dω

2π
[ln(1 − Vk�(k, ω)) − Vk�(k, ω)], (8)

where �(k, ω) is the polarization operator of the e–h system with account of e–h pairing (see
figure 1(b)):

�(k, ω) = �ee(k, ω) + �hh(k, ω) + �eh(k, ω). (9)

For e–e and h–h polarization operators we have

�ee(hh)(k, ω) = −2
∫

d2 p

(2π)2

∫ +∞

−∞
dω

2π i
[(G H F(p, ε)G H F(−p + k,−ε + ω)

+ G H F(p, ε)G H F(−p − k,−ε − ω))

+ (FH F(p, ε)FH F(p + k, ε + ω) + FH F(p, ε)FH F(p − k, ε − ω))], (10)
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where G H F and FH F are normal and anomalous Green functions in the Hartree–Fock
approximation equation (2).

�eh(k, ω) = −2
∫

d2 p

(2π)2

∫ +∞

−∞
dω

2π i
(FH F(p, ε)FH F(p + k, ε + ω)

+ FH F(p, ε)FH F(p − k, ε − ω)). (11)

Without e–h pairing �ee = �hh = �0; �eh = 0, where �0 is the polarization operator
for a normal one-component Fermi-gas.

Using equations (8)–(11) we find the correlation energy Ec
1 for the small transferred

momentum approximation (x = k
pF

� 1) as a functional of z p.

The correlation energy Ec
2 for large transferred momenta (x = k

pF

 1) as a functional of

z p may be obtained as the sum of loop and exchange diagrams of the second order (figure 1(c)).
We used for the correlation energy Ecorr of the system under consideration the interpolation

between large and small momenta (as used in [30] for metallic e–h liquid, see also [24, 25]):

Ecorr =
∫ ∞

0
q dq I (q), (12)

where

I (q) = I1(q)I2(q)

I1(q) + I2(q)
; Ec

1 =
∫

q dq I1(q); Ec
2 =

∫
q dq I2(q). (13)

As a result taking into account equations (5) and (8) we obtain the total energy of the
ground state E depending on parameters D and n:

E = EH F + Ecorr , (14)

as the functional of u p and vp or the functional of z p = u p

vp
= ctgφp (we have |vp| =

1√
1+z2

p

, |u p| = |z p|√
1+z2

p

).

4. The variational calculations

To obtain the total energy of the ground state the minimization of E(z p) is performed
numerically using probe functions z p in the form

z p = A

(
1 +

p2

4

) 3
2

+ B, (15)

where A and B are variational parameters (see also [25] where a two-dimensional excitonic
liquid was calculated for one quantum well, D = 0).

The function (15) was chosen so that if B = 0 the function z−1
p is equal to the Fourier

transformation of the wavefunction of the two-dimensional Wannier–Mott exciton. For the
semimetal state we have vp = 0, and so z p → ∞.

The total energy Et as a minimum of parameters A and B was calculated by the Monte
Carlo method at different values of parameters D (separation between e and h layers) and
rs = 1√

πn
.

The results are given in table 1. The energy E(D) and the density of the liquid state
decreases as D grows. At D = 0 and rs → ∞ the energy equals the two-dimensional exciton
energy Rydh

2∗ = 2µe4

h̄2ε
. At large rs the calculated function E(D) agrees with the energy of the

two-dimensional spatially indirect exciton [31]. As results of calculations show, the gap �

appears in the spectrum of new quasiparticles, increasing with the decrease of density n (see
figure 2). So the system (for finite z p) is an insulator. If n → 0 the gap becomes equal to the
binding energy of the two-dimensional exciton.
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Figure 2. The spectrum of quasiparticles E(p) (in units Ryd∗
2; p is momentum in units pF ). 1—

rs = 2.2, D = 0; 2—rs = 1.6, D = 0; 3—rs = 1.0, D = 0; 4—rs = 2.2, D = 0.5; 5—rs = 1.6,
D = 0.5.

Table 1. Isolated exciton energy Eex , total energy of exciton liquid Et , binding energy
Eb = Eex − Et of liquid phase, equilibrium distance between excitons in the liquid state rmin

s

(rmin
s = 1

a∗√
πnmin

; nmin is equilibrium density), Kosterlitz–Thouless superfluid transition and

BCS critical temperatures as functions of interlayer separation D. Here µ is effective mass; ε is the
dielectric constant. Values Tc and T 0

c in the first three lines correspond to equilibrium densities of
liquid phase at corresponding distance D; the fourth line correspond to fixed rs = 3.6 (liquid phase

does not exist at D � Dcr
∼= 1.1); a∗ = h̄2ε

4µex e2 and Ryd∗
2 = 2µex e4

h̄2ε
are the radius and energy of

the two-dimensional exciton (at D = 0).

D −Eex (in Ryd∗
2) −Et (in Ryd∗

2) Eb (in Ryd∗
2) rmin

s kB T 0
c × 10−3 (in Ryd∗

2) kB Tc × 10−3 (in Ryd∗
2)

0 1.0 1.06 0.06 2.2 1.7 1.3
0.5 0.80 0.84 0.04 2.6 1.3 1.1
1.0 0.50 0.51 0.01 3.2 0.8 0.7
5.0 0.26 — — — — 0.2

5. Rare system of excitons with spatially separated electrons and holes

The distinction between excitons and bosons manifests itself in exchange effects (see,
e.g., [11, 24]). These effects for indirect excitons at large interwell separation D in a rare
system na2(D) � 1 are suppressed because of the negligible overlap of wavefunctions
of two excitons due to the potential barrier, connected with the dipole–dipole repulsion of
indirect excitons [11] (here a(D) is the exciton radius along quantum wells). At large D the
small parameter mentioned above for two indirect excitons with parallel dipoles has the form
T = exp[−(D/2a∗)1/4] (a∗ = h̄2ε

4µe2 ; µex = memh
me+mh

is the effective mass of the indirect exciton;
me and mh are masses of the electron and hole). The contribution of the exchange interaction
to the chemical potential µex at small densities n and small distances between layers D is

µex ∼ T na2 E0, (16)

where a = (8a∗)1/4 D3/4 is the radius of the indirect exciton [31]; E0 is the binding energy of
the indirect exciton.

So at large D the exchange interaction in the spatially separated system is suppressed
in contrast to the e–h system in a single well due to the smallness of tunnel exponent
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T ∼ exp[−(D/2a∗)1/4] connected with the penetration through the barrier of dipole–dipole
interaction (see also [11]). Hence, at D 
 a∗, exchange phenomena, connected with the
distinction between excitons and bosons, can be neglected.

As a result we obtain for the contribution of the exchange interaction µex in chemical
potential at small n and D(D � a∗)

µex = 4.71n(1 − D). (17)

The contribution of the dipole interactions can be represented by the sum of the ladder
diagrams given in figure 3. The Bogolubov approximation for a two-dimensional weakly
interacting Bose gas is not valid due to the divergence of the two-dimensional amplitude of the
scattering in the Born approximation [32]. For small transferred momenta q → 0, essential
for low densities n, the integrand in q behaves for the diagram in figure 3(a) as ∼ 1

q3 and for

the diagram in figure 3(b) as ∼ 1
q2 . Therefore, the diagrams in figure 3(a) are more important

for the energy than that of figure 3(b). Therefore at n → 0 we can take into account the direct
dipole–dipole interaction of excitons in the framework of two-dimensional Bose gas theory
in the ladder approximation [32]. The relation of vertex � to the two-dimensional scattering
amplitude f0(κ) is

� = −2 f0(κ)

(
2πκ

i

) 1
2

, (18)

and the contribution of the dipole–dipole interaction to the chemical potential isµd = �n = κ2

2 ;
the two-dimensional scattering amplitude for the interaction potential in the form U(r) =
Ar−n(n > 2) is f0(κ) = (π i/2κ)

1
2

ln(κ A1/n−2)
.

At ln((κ A)−1) 
 1 the contribution of the dipole–dipole interaction to the chemical
potential is

µ = 8πn

2M ln
(

1
(8πe4 D4 M2n)

) , (19)

where M = me + mh is the mass of the indirect exciton.
The estimation of the contribution of the van der Waals interaction to the chemical potential

µv is analogous to the dipole–dipole one. As a result for the contribution of the van der Waals
interaction the equations above are valid, where n = 6 and A = C6 is the coefficient of the
van der Waals interaction.

Now we shall find the coefficient C6 for small and large interlayer separation D. The
coefficient C6 is related to the polarizability α of the ground state of the two-dimensional
exciton (compare [33] for the three-dimensional case):

C6 = − 3
2 αρ2, (20)

where ρ is the exciton radius.
The polarizability α is

α = −2e2
∑

k

|x0k |2
E0 − Ek

, (21)

where x is the relative e–h coordinate of the exciton with spatially separated e and h along
layers; Ek are exciton energies. The series (21) may be summed by using the auxiliary operator
b (see [34]):

x = m

h̄

db

dt
. (22)
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Figure 3. (a) Essential diagrams for the rare interacting exciton system; ladder diagrams for a
single exciton; interaction between excitons (∼e2 D2/r3 at r 
 D); part of the essential diagram;
(b) omitted diagrams for n → 0.

In a standard way one can introduce the function f (r) through the equality b = cos φ f (r).
The function f (r) obeys the equation

ir = 1

2
f ′′ +

1

2r
f ′ − 1

2r2
f +

ψ ′
0

ψ0
f ′, (23)

where ψ0 is the wavefunction of the ground state for the exciton. The perturbed function ψ0(r)

for small D is calculated in the first order of U(r) = 2e2 D2

εr3 , the wavefunctions for the two-
dimensional exciton at D = 0 being the zeroth order approximation. For large D the ground
state of the exciton is characterized by the wavefunction of the oscillator with the radius [31]
a = (8a∗)1/4 D3/4.



12466 Yu E Lozovik et al

Figure 4. Energy (E) of the system of spatially separated e and h versus density n; E and n are

in units of binding energy Ryd∗
2 = 2µex e4

h̄2ε
and (a∗)−3, where a∗ = h̄2ε

4µex e2 is the effective Bohr

radius of the two-dimensional exciton at D = 0; curves 1–5 correspond to the following values of
D: 1—D = 0; 2—D = 0.5; 3—D = 1.0; 4—D = 1.9; 5—D = 5.0; limit E = 0 for all curves
corresponds to (different) exciton energies Eex (D) for the corresponding D.

Using the solution of the differential equation for f (r), we find eigenvalues of the operator
b. On substituting them into equation (22), we find z. After summing the series equation (21)
we obtain for the polarizability α at small D

α = 21

16
a3

(
1 +

64π2m2e4 D4

h̄4a2

)
. (24)

For large D we have

α = 0.93D
9
4 a∗ 3

4 . (25)

On substituting equations (24) and (25) into (20), we find the contribution of the van der
Waals interaction to the chemical potential.

As calculations show, already at D = 0.5 the contribution of the van der Waals interaction
to the energy E(n) and to the chemical potential is negligible (∼10−2) in comparison with the
contribution from the dipole–dipole interaction.

The exchange interaction in the spatially separated system for this region D is also smaller
than that for the single-layer e–h system. This is due to small tunnelling through the barrier
originated from the dipole–dipole interaction. The total chemical potential µ of the system is
obtained as the sum of exchange, dipole–dipole and van der Waals contributions. The total
energy for the rare exciton gas is found by the integration of relation µ = dE

dn .
For crude estimation of the energy of the ground state at all surface densities n one may

use an interpolation between results of the variational calculations at n � 1 (see section 4) and
low densities (section 5).

6. Discussion of the results of calculations of liquid and gas states

The results of the variational calculation (section 4) show that in a single-layer (isotropic) e–h
system (D = 0) the exciton liquid phase exists with the energy E ∼= −1.05Eex , where Eex

is the binding energy of the two-dimensional exciton, and the equilibrium distance between
particles is r ∼= 2.2a∗, where a∗ is the effective Bohr radius of the two-dimensional exciton
(these results agree with [12]).
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On increasing the distance between layers D the binding energy of the liquid decreases,
and the equilibrium separation between particles increases (see figure 4). At D = 1.1a∗ the
energy of the liquid phase becomes equal to that of the isolated exciton, and at D > 1.1a∗ the
liquid becomes metastable, the exciton gas phase being stable (figure 4). At D � Dsp = 1.9a∗
minima on the dependence E(n) disappear, so the liquid phase becomes absolutely unstable.
The gas–liquid quantum phase transition in the exciton system has first order (interwell
separation D being the controlling parameter in the problem).

7. The Kosterlitz–Thouless transition

The variational calculation gives � �= 0 for all interlayer separations D and densities n for the
isotropic e–h system (section 4). Besides the rare case corresponds (also for the anisotropic
case) to a slightly interacting Bose gas of excitons (section 5). So the excitonic phase exists for
the isotropic case in the whole n–D plane. The superfluidity appears in the two-dimensional
Bose system below the Kosterlitz–Thouless transition temperature Tc [23]:

Tc = πns

2M
, (26)

where only coupled vortexes can exist.
At small momenta the collective spectrum of the rare exciton system is the sound like

ε(p) = cs p (cs =
√

µ

M is the sound velocity) and satisfies Landau criterion for superfluidity.

The density of the superfluid component ns(T ) for a two-dimensional system with the sound
spectrum can be estimated as

ns = n − 3ζ(3)

2π

T 3

c4
s M

. (27)

The second term in equation (27) is the temperature dependent normal density taking into
account the gas of phonons (‘bogolons’) with dispersion law ε(p) = √

µ/M p; µ is given by
equation (19).

Substituting the estimate for the density of the superfluid component ns from equation (27)
to (26), we obtain the equation for temperature Tc of the Kosterlitz–Thouless transition. Its
solution is

Tc =
[(

1 +

√
16

(6 × 0.45)3π4

(
MT 0

c

n

)3

+ 1

)1/3

+

(
1 −

√
16

(6 × 0.45)3π4

(
MT 0

c

n

)3

+ 1

)1/3]
T 0

c

(4π)1/3
. (28)

Here T 0
c is an auxiliary quantity equal to the vanishing temperature of the superfluid

density in the mean field approximation ns(T 0
c ) = 0:

T 0
c =

(
32

3ζ(3) ln2 (
1

8πnM2 D4

))1/3
πn

M
. (29)

We consider a system of large and intermediate densities. For the estimation of the
contribution of one-particle excitations to the normal component at large and intermediate
densities n we use the relation ns(T ) with T 0

c in the BCS approximation at T 0
c − Tc � T 0

c . As
a result the density of the superfluid component can be expressed in the BCS approximation
through the total density and the critical temperature T 0

c [35]:

ns(T )

n
= 2(T 0

c − T )

T 0
c

. (30)
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In this approximation

�(0) = 1.76T 0
c , (31)

where �(0) is the gap in the excitonic phase considered above (see section 4).
It is necessary also to take into account the contribution of the collective excitations to the

density of the normal component nn . At small temperatures the contribution of elementary
excitations to the density of the normal component can be estimated in the approximation of an
almost ideal equilibrium Bose gas. As a result we have for the superfluid density ns = n − nn

ns = n − n
2T − T 0

c

T 0
c

− 3ζ(3)

2π

T 3

c4
s M

, (32)

where c =
√

n
m

dµ

dn is the sound velocity of a low-density exciton gas. The chemical potential
µ of the system is determined from the variational approach (see section 4).

As a result, if we substitute equations (27) or (32) into equation (26) we can obtain
estimations for the critical temperatures of the Kosterlitz–Thouless transition (see table 1).
The temperature of the Kosterlitz–Thouless transition is decreasing at the increase D. At
T = TK T the vortex–antivortex pair dissociation in the exciton system takes place and the
global superfluid density has a universal jump [23]. Local superfluid density fluctuations can
be observed even at T > Tc by local photoluminescence study (see also the conclusion).

8. Mott transition in an anisotropic e–h system

Above we consider the isotropic e–h system with identical Fermi surfaces for electrons and
holes (circles with the same radii) at high and middle densities ne = nh . The ground state of
the isotropic e–h system (with attractive e–h interaction) at any density is not stable due to e–h
pairing [24], analogously to the Cooper instability in a one-component system [28].

In the anisotropic two-dimensional e–h system Mott metal–insulator transition takes place
analogously to the three-dimensional anisotropic e–h system [26]. We shall find critical
densities ncr for the Mott transition as a function of interlayer separation D for a simple
model of the e–h system. At n � ncr the ‘metal’ e–h phase becomes preferable in the e–h
system; at n < ncr (D) the excitonic phase is the ground state of the system (at the same time
the excitonic gas is always a metastable state due to dipole–dipole repulsion of excitons with
spatially separated e and h).

We use for simplicity the model with congruent (parallel) regions of two-dimensional
Fermi surfaces of electrons and holes with length κ1. For simplicity we take κ1

pF
� 1. Let

the distance between congruent regions of e and h Fermi surfaces be κ2. We suggest also that
κ2
pF

� 1.
We suppose that the gap in the spectrum of excitations is small (� � εF ) near the Mott

critical density, i.e. the Mott quantum phase transition has second order (this will be proved
below). As usual we suppose that the value of the gap �(p) is independent of the momentum
and equal to the constant � at p < κ1, and equal to zero in other regions. The region of slow
decrease of the gap is proportional to � as proved in [26]. As � is small near ncr we neglect
the region along the Fermi surfaces where the gap is decreasing.

Analogously to calculations in section 2 we obtain in the Hartree–Fock approximation
(with e–h pairing taken into account)

EH F =
[
πnκ4

1 − 4
√

πn

((√
κ2

1 + κ2
2 − κ2

)
κ2

1

2
+

κ3
1

3
ln

√
κ2

1 + κ2
2

κ2
+ πn

√
2Dκ4

1

]
�2. (33)
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It turns out that the correlation energy may be estimated in the RPA taking account of e–h
pairing. The contribution of diagrams essential for large momenta is proportional to �4 and
so is negligible near n = ncr . As a result using equation (8) we have for the correlation energy
Ecorr

Ecorr = 64
κ2

pF

(
1 +

κ2 D

pF

)
�2. (34)

Contributions of order �4 in Ecorr = A�4 + B�2 + C do not affect the critical Mott
concentration obtained from the condition �m = 0 where � = �m is calculated from the
minimization of the total energy (only the inequality A �= 0 for coefficient A in Ecorr is
essential). The total energy E is

E = EH F + Ecorr . (35)

Minimizing the total energy E on the order parameter �, we obtain (at A �= 0) the gap �

as a function of the density n and of interlayer separation D:

�2 = 1

128κ2
2

[
(1 +

√
2D)πnκ4

1 − 4
√

πn

((√
κ2

1 + κ2
2 − κ2

)
κ2

1

2
+

κ3
1

3
ln

√
κ2

1 + κ2
2

κ2

)
+64κ2

]
.

(36)

The result, equation (36),does not depend on the value of coefficient A. From the condition
� = 0 in equation (36) we find the critical density ncr of the metal–insulator transition as a
function of D:

ncr (D) = 1

(1 +
√

2D)πκ4
1

[
2

((√
κ2

1 + κ2
2 − κ2

)
κ2

1

2
+

κ3
1

3
ln

√
κ2

1 + κ2
2

κ2

)

+

√√√√√4

((√
κ2

1 + κ2
2 − κ2

)
κ2

1

2
+

κ3
1

3
ln

√
κ2

1 + κ2
2

κ2

)2

− 64κ2(1 +
√

2D)πκ4
1

]
.

(37)

As follows from equations (36) and (37), at n → ncr we have � → 0, i.e. the Mott
quantum phase transition has second order.

9. Indirect biexcitons in the superlattice slab

Now we consider an isotropic slab of the superlattice with alternating e and h layers. We
show that the rare system of weakly interacting two-dimensional indirect excitons in this
superlattice is unstable, in contrast to the two-layer system in CQWs. At small densities
na2 � 1 the system of indirect excitons at low temperatures is the two-dimensional weakly
nonideal Bose gas with dipole moments d normal to the wells in the ground state (d ∼ eD, D
is the interwell separation), increasing with the distance between wells D (a(D) is the radius
of the excitons along the wells; a ≈ a∗ = h̄2/µexe2 at D � a∗ and a ≈ a∗ 1

4 D
3
4 at D 
 a∗,

when the spectrum of low lying levels is equivalent to that of the two-dimensional oscillator;
µex = memh

me+mh
is the effective mass of the indirect exciton). In contrast to ordinary excitons, for

spatially indirect excitons the main contribution to the energy originates from dipole–dipole
interactions U− and U+ of excitons with opposite and parallel dipoles, respectively. Two
parallel (+) and opposite (−) dipoles in the rare system interact as U+ = −U− = e2 D2

εR3 , where
ε is the dielectric constant; R is the distance between dipoles along quantum well planes; we
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Figure 5. The potential energy U(r) of the interaction of indirect excitons with opposite dipoles,
located in neighbouring pairs of wells (in units of the binding energy of the indirect exciton
Eex = e2/εD), as a function of the distances r between excitons along the wells (in units of
D).

suppose that D/R � 1 and L/R � 1 (L is the mean distance between dipoles in the direction
normal to the well planes). Below we consider the case when the number of quantum wells k
in the superlattice is restricted, k � 1

D
√

πn
, and this is valid for small k or for very low exciton

density (n is the exciton surface density). In this case the inequality L/R � 1 is valid.
At large D for two indirect excitons with opposite dipoles the small tunnelling parameter

is exp[−0.33
√

2D/a∗] due to Coulomb repulsion at small distances (see figure 5). In section 2
it was shown that exchange effects in the rare system of indirect excitons can be neglected.

The total Hamiltonian Ĥtot of the rare system of indirect excitons in the superlattice is

Ĥtot = Ĥ0 + Ĥint . (38)

Here Ĥ0 is the Hamiltonian of the system of noninteracting excitons:

Ĥ0 =
∑

p

ε0(p)(a+
pap + b+

pbp + a+
−pa−p + b+

−pb−p), (39)

where ε0(p) = p2

2M is the spectrum of an isolated two-dimensional indirect exciton (M =
me + mh , me and mh are the exciton, electron and hole mass, respectively). a+

p , ap, b+
p and bp

are the creation and annihilation operators of excitons with up and down dipoles; Ĥint is the
Hamiltonian of the interaction between excitons:

Ĥint = U

2S

∑
p1+p2=p3+p4

(a+
p4

a+
p3

ap2ap1 + b+
p4

b+
p3

bp2bp1 − a+
p4

a+
p3

bp2 bp1 − b+
p4

b+
p3

ap2ap1

− a+
p4

b+
p3

ap2bp1); (40)

S is the surface of the system. Let us consider the temperature T = 0. Assuming the majority
of particles are in the condensate ((N − N0)/N0 � 1, where N and N0 are the total number
of particles and the number of particles in the condensate), we account as in the Bogolyubov
approximation only for interaction between condensate particles and of excited particles with
condensate particles, neglecting the interaction between overcondensate particles. Then the
total Hamiltonian transforms to

Ĥtot = 1
2

∑
p �=0

[ε0(p)(a+
pap + b+

pbp + a+
−pa−p + b+

−pb−p) − Un(a+
pb+

−p + apb−p + a+
−pb+

p + a−pbp

+ a+
pbp + a+

−pb−p + apb+
p + a−pb+

−p)]. (41)
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Figure 6. Two-dimensional indirect biexcitons consisting of indirect excitons with opposite dipole
moments, located in neighbouring pairs of wells.

In equation (41) terms, arising from first and second terms of the Hamiltonian
equation (40), which describe the repulsion of the indirect excitons with parallel dipole
moments, are compensated by other terms of the Hamiltonian equation (40), describing the
attraction of indirect excitons with opposite dipoles. In the result only terms describing the
attraction survive. Let us diagonalize Hamiltonian Ĥtot by using the unitary transformation of
the Bogolyubov type [27]

ap = 1√
1 − A2

p − B2
p

(αp + Apα
+
−p + Bpβ

+
−p);

bp = 1√
1 − A2

p − B2
p

(βp + Apβ
+
−p + Bpα

+
−p),

(42)

where the coefficients Ap and Bp are found from the condition of vanishing of coefficients at
nondiagonal terms in the Hamiltonian. As a result we obtain

Ĥtot =
∑
p �=0

ε(p)(α+
pαp + β+

pβp) (43)

with the spectrum of quasiparticles ε(p):

ε(p) =
√

(ε0(p))2 − (nU)2. (44)

At small momenta p <
√

2MnU the spectrum of excitations becomes imaginary. Hence,
the system of weakly interacting indirect excitons in a slab of a superlattice is unstable.

This, on first view, strange result can be illustrated by the following example. There are
equal numbers of dipoles oriented up and down. Let us consider four dipoles, two of them
being oriented up and two down. It is easy to count directly that the number of repelling pairs
is smaller than that of attracting ones. The prevailing attraction leads to instability.

Let us consider as the ground state of the system the rare weakly nonideal gas of
two-dimensional indirect biexcitons, created by indirect excitons with opposite dipoles in
neighbouring pairs of wells (figure 6). In spite of the fact that masses of electrons and holes
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are of the same order for the biexciton the adiabatic approximation turns out to be applicable.
The small parameter is not the ratio between masses of the electron and hole, but the numerical
small parameter is equal to the ratio of biexciton and exciton energies or the ratio between radii
of the biexciton and exciton along quantum wells (see, e.g., [36]). These parameters are small
at me = mh , and they are even smaller than analogous parameters for atoms and molecules.
The smallness of these parameters will be verified below by the results of the calculation of
the indirect biexciton. Here, for simplicity, it is assumed that the distance between wells D is
greater than the radius of the indirect biexciton a0: D 
 a0 ∼ a∗ 1

4 D
3
4 . The potential energy

of interaction between indirect excitons with opposite dipoles U(r) has the form shown in
figure 5 (r is the distance between indirect excitons along quantum wells):

U(r) = e2

εr
− 2e2

ε
√

r2 + D2
+

e2

ε
√

r2 + 4D2
, (45)

where ε is the dielectric constant. At r > 1.11D indirect excitons attract, and at r < 1.11D
they repel. The minimum of potential energy U(r) locates at r = r0 ≈ 1.67D between indirect
excitons. At large D one can expand the potential energy U(r) on the parameter r−r0

D � 1 up
to the second order:

U(r) = −0.04
e2

εD
+ 0.44

e2

εD3
(r − r0)

2. (46)

So at large D biexciton levels correspond to the two-dimensional harmonic oscillator with

the frequency ω =
√

0.88e2

MεD3 :

En = −0.04
e2

εD
+ 2

√
2E0

(
r∗

D

)3/2

(n + 1), (47)

where E0 = µex Me′4
h̄2ε

, r∗ = 1
2 a∗, e′2 = 0.88e2. In the ground state the characteristic spread of

biexciton ab along quantum wells (near the mean radius of biexciton r0 along wells) is

ab =
√

2h̄

Mω
= (8r∗)1/4 D3/4 = 1.03a, (48)

where a = (8a∗)1/4 D3/4 is the radius of the indirect exciton.
Hence, the ratio of the binding energies of the biexciton and exciton is Ebex/Eex = 0.04 �

1 at D 
 a (the ratio of radii of the exciton and biexciton is a/r0 = 0.67(8a∗)1/4 D−1/4 � 1).
So the adiabatic condition is valid.

The mean dipole moment of the indirect biexciton is equal to zero. However, the
quadrupole moment is nonzero and equal to Q = 3eD2 (the large axis of the quadrupole
is normal to the quantum wells). So indirect biexcitons interact at long distances R 
 D as
parallel quadrupoles: U(R) = 9e2 D4/R5. Exchange effects, connected with the distinction
between rare indirect biexcitons and bosons, can be suppressed due to the negligible overlap
of wavefunctions of two biexcitons on account of the potential barrier, associated with
the quadrupole repulsion of indirect biexcitons at long distances analogously to dipole
excitons. At large D the small tunnelling parameter connected with this barrier has the
form exp[−0.93

√
D/a∗]. Hence, at D 
 a∗ exchange effects for indirect biexcitons can

be neglected.
We account for the scattering of biexciton on biexciton by using the results of the theory of

the two-dimensional Bose gas [32]. The chemical potential µ of two-dimensional biexcitons,
repulsed by the quadrupole law, in the ladder approximation, has the form (h̄ = 1) (compare
equation (19))

µ = 4πnbex

Mb ln
(

1
8π(9e2 D4 Mb)2/3nbex

) , (49)
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where nbex = 1
2 n is the density of biexcitons; Mb = 2M is the mass of a biexciton.

For the estimation of the superfluidity and Kosterlitz–Thouless transition for the indirect
biexcitons in superlattices equations (27)–(29) are valid with the substitution nbex instead of n
and Mb instead of M .

10. Conclusion

The exciton liquid–exciton gas quantum phase transition has been investigated in the isotropic
system of spatially separated electrons and holes for increase of separation D between e
and h layers. The binding energy of the exciton liquid is a decreasing function of D. At
D < Dm = 1.1a∗ the energy of the liquid phase is greater than the energy of a single exciton,
so the exciton liquid is a stable phase in this region and the exciton gas is a metastable phase (all
distances are given in units of the two-dimensional exciton at D = 0). At D = Dm = 1.1a∗
the exciton liquid–exciton gas first order quantum transition takes place. The minimum on the
curve E(n) corresponding to the exciton liquid phase survives in the region Dm < D < Dcr

where Dcr ≈ 1.9a∗, i.e. the liquid is metastable at these interlayer separations. At D > 1.9a∗
the liquid phase becomes absolutely unstable and the exciton density is determined only by
external conditions. Excitonic gas is metastable at any D due to dipole–dipole repulsion
of excitons with spatially separated e and h. At finite densities (smaller than the density
of excitonic liquid nliq ) biexcitons (‘H2’) and biexciton ions (‘H+

2’) and other complexes
(particularly charged ones) with spatially separated electrons and holes also exist at small
D (some of them become stabilized in strong magnetic fields). They also may have interesting
transport properties along layers.

The system of excitons with spatially separated electrons and holes is superfluid at
temperatures T < TK T (D) where TK T (D) is the Kosterlitz–Thouless transition critical
temperature, TK T (D) decreasing with the separation between e and h layers.

For an anisotropic e–h system the metal–insulator Mott quantum phase transition is
investigated and the critical densities of excitons at the Mott transition as functions of interlayer
separation are studied.

Note that the liquid exciton phase can manifest itself, e.g. through the appearance of
liquid drops of excitons, which can be found experimentally due to the motion of drops as
gigantic fluctuations of photoluminescence at the local observation of photoluminescence
using a nontransparent mask with a microhole or using an optical fibre. The observation of
exciton drops through fluctuations of the current along the layers in CQWs is also possible.
The interlayer resistance relating to drag of electrons and holes can also be a sensitive indicator
of the gas–liquid phase transition and the transition to the superfluid and to other phases of the
e–h system (see, e.g., [37, 38] and references therein). Linear and nonlinear optical properties
also have some peculiarities in the system with e–h pairing (see, e.g., [39, 40]).

The collective spectrum, the density of the superfluid component and the Kosterlitz–
Thouless transition temperature for the system of indirect excitons were calculated.

It is shown that the rare system of indirect excitons in a slab of a superlattice with alternating
e and h layers turns out to be unstable due to the attraction of excitons with opposite dipoles
at large distances. The rare system of indirect biexcitons in superlattices repelled as parallel
quadrupoles is stable. So if the laser pumping increases at low temperatures the excitonic
line can vanish and only biexcitonic line survive. At large D the biexciton is equivalent to a
two-dimensional oscillator. Two biexcitons interact as parallel quadrupoles. The Kosterlitz–
Thouless transition to the superfluid state is calculated for the system of indirect biexcitons.
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